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Organic  solar  cells  (OSCs)  have  received  considerable  at-
tention  and  demonstrated  great  potential  as  flexible,  light-
weight,  semitransparent,  and  low-cost  energy  sources.  Flex-
ible  OSCs  have  practical  applications  in  wearable  electronics,
portable  chargers  for  back  bags  and  tents,  solar  airships, etc.
Many efforts have been made to improve the performance of
flexible OSCs, including the development of flexible transpar-
ent  electrodes,  new  organic  materials,  and  optimization  of
the  device  structure.  Progresses  have  been  achieved  in  the
last  few  years,  and  power  conversion  efficiencies  (PCEs)  of
16.1%[1],  16.5%[2],  13.61%[3],  and 10.09%[4] for 0.04 cm2 single-
junction  device,  0.04  cm2 tandem  device,  1  cm2 single-junc-
tion device, and 25 cm2 module were reported.

Flexible transparent electrodes are the essential compon-
ents for flexible OSCs, which should possess high electrical con-
ductivity,  transparency,  and  excellent  mechanical  flexibility.
Flexible ITO is the most widely used transparent electrode. Be-
cause  of  the  brittleness,  high  sheet  resistance  and  high  cost
of flexible ITO electrodes[5], cost-effective and flexible transpar-
ent  electrodes  are  still  highly  needed.  Various  ITO-free  elec-
trodes,  such  as  metal  mesh,  metal  nanowires,  graphene,  car-
bon  nanotube,  were  developed  and  applied  in  flexible  OSCs.
Fig.  1 shows  the  comparison  of  the  conductivity  and  light
transparency of various transparent electrodes. The metal elec-
trodes,  including  the  thin  metal,  metal  grid,  and  metal
nanowire  have  good  conductivity.  However,  the  thin  metal
can  give  a  relative  low  transmittance  around  40%–60%.  The
carbon-involved  transparent  electrode, i.e. CNT  and
graphene,  and PEDOT:PSS electrode have good optical  trans-
mittance  around  70%–80%.  However,  they  show  relative
lower  electrical  conductivity  with  sheet  resistance  as  high  as
100 Ω/□.  Overall,  among these electrodes,  metal  grid  and Ag
nanowires are among the best choices due to their good aver-
age  visible  transmittance  (AVT  80%)  and  relatively  low  sheet
resistance (Rs ~10 Ω/□) [6].

The metal mesh electrodes were made by thermal evapor-
ation[7], flexo printing[8], or inkjet printing[7, 9]. These mesh elec-
trodes  have  lower  sheet  resistance  of  several  Ω/□.  However,
the  light  transmittance  was  relatively  low  (<  80%)  because
the  grid  width  are  usually  larger  than  10 μm.  In  contrast,  the
metal  mesh  electrodes  made  by  nanoimprinting  method
have  advantages  both  in  conductivity  and  transparency.  The
line width of the metal mesh can be reduced to < 3 μm, which

is  invisible  to  the  naked  eyes  and  ensures  a  good  transpar-
ency. This electrode showed an average transmittance > 85%.
Since  a  thick  Ag  layer  (~  3 μm)  was  embedded  in  the  sub-
strate, the electrode has excellent conduction with sheet resist-
ance < 5  Ω/□.  The performance of  OSCs is  highly  sensitive to
the  conductivity  of  the  transparent  electrode,  especially
when  the  cell  area  is  >  1  cm2[10],  so  this  type  of  electrode  is
quite  suitable  for  large-area  flexible  solar  cells.  Chen et  al.
first  reported  the  use  of  metal  grid  electrodes  in  flexible
OSCs[11], and an efficiency of 5.85% was achieved for a 1.21 cm2

OSC[10].  Following this,  Tan[12] and Wu et  al.[13] reported OSCs
with  these  electrodes.  To  smooth  the  surface  of  the  silver
nanogrid  and  to  increase  the  conductivity  of  the  final  elec-
trode,  Su et  al. developed  new  silver  nanogrid/copper  (Ag-
NG/Cu)  or  silver  nanogrid/Ni  composite  electrode  by  apply-
ing  Cu  or  Ni  electroplating  and  the  following  surface  polish-
ing steps[14], and a lowest sheet resistance of 0.03 Ω/□ was ob-
tained.  The  highest  figure  of  merit  (FOM)  reached  8  ×  104[15].
Ma et al. reported the flexible OSCs with Ag-NG/Cu electrode.
By  modifying  electrode  surface,  power  conversion  efficien-
cies  (PCEs)  of  8.75%,  7.79%  and  7.35%  for  2.4,  4.0,  and  9.0
cm2 cells  were  achieved,  respectively,  which  are  higher  than
that  of  devices  with  flexible  ITO  electrode  (6.61%  and  5.88%
for  2.4  and  4.0  cm2 cells,  respectively)  (Fig.  2)[16].  The  Ag/Cu
composite  grid-involved  flexible  cells  could  maintain  91.7%,
81.7%,  and  77.0%  efficiency  of  the  1  cm2 cell  as  the  area  in-
creased  to  2.4,  4.0,  and  9.0  cm2,  respectively,  while  the  effi-
ciency for flexible ITO device decreased to 74.6% (for 2.4 cm2)
and  66.4%  (for  4  cm2)  of  the  1  cm2 cells,  clearly  demonstrat-
ing that lowering the sheet resistance of the transparent elec-
trode  is  helpful  in  achieving  high  performance  for  large-area
solar cells.
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Fig. 1. (Color online) Transparency and sheet resistance of the transpar-
ent  conducting  electrodes  (reproduced  with  copyright  permission
from SPIE publisher)[6].
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Very  recently,  Wei et  al. reported  flexible  OSC  module
with  Ag-NG  electrode via slot-die  coating  (Fig.  3).  Owing  to
the  difference  in  film  formation  kinetics  between  spin-coat-
ing  and  slot-die  coating,  controlling  of  the  film  morphology
is  critical  for  large-area  fabrication.  By  applying  hot  sub-
strates  and  non-halogen  solvent,  a  PCE  of  >  10%  was
achieved for  the printed cell  with an area of  25 cm2,  which is
the highest PCE for a flexible cell with > 10 cm2 area.

In  addition  to  silver  nanogrid  electrode,  nanowires  (Ag-
NW)  networks  are  also  good  candidates  for  the  preparation
of  large-area  flexible  solar  cells  due  to  their  balanced  light
transparency  and  conductivity.  Both  AgNW  and  AgNW  com-
posite  electrodes[17] were  prepared  through  various  solution-
processed methods, including spin-coating[18, 19], slot-die coat-
ing[20],  brush printing[21].  The sheet resistances of AgNW elec-
trode  are  generally  10–20  Ω/□,  and  transmittance  can  be  as
high as 85%–92%. The conductivity of AgNW electrode is  de-
termined by the connection of Ag nanowires.  The removal of
polyvinylpyrrolidone  (PVP)  surfactant  and  the  welding  of  the
nanowire  can  improve  the  conductivity[22].  Choy et  al. de-
veloped  an  one-step  multifunctional  chemical  treatment  for

AgNW/PEDOT:PSS composite electrode[23].
ITO  is  widely  used  in  optoelectronic  devices.  The  flexible

ITO electrode is not good at mechanical and conductive prop-
erties. Though the sheet resistance of ITO can reach to 10 Ω/□,
the  flexible  ITO  has  higher  sheet  resistance  (40–60  Ω/□).  The
use  of  flexible  ITO  electrode  in  OSCs  with  area  >  1  cm2 was
rarely  reported,  especially  in  recent  years. Tables  1 and 2
show  the  development  of  flexible  OSCs  (> 1  cm2 single  cells
and the flexible  modules).  A  PCE of  5.25% for  80 cm2 flexible
OSC modules with flexible ITO electrode was reported[24].

Spin-coating,  slot-die  coating  and  brush  printing  are  not
pre-patternable, and a laser scribing process is needed for mak-
ing a  structured electrode.  Very  recently,  Ma et  al.[3] reported
the  preparation  of  large-area  patterned  AgNW  electrode
through a gravure printing process. Fig. 4(a) shows the schem-
atic  diagram  of  gravure  printing  process.  The  printing  pro-
cess  contains  three  steps:  (1)  the  doctor  blade  forces  the  ink
to  fill  the  gravure  cavities;  (2)  the  ink  is  transferred  from  the
cavities  of  the  gravure  roller  to  the  substrate;  (3)  ink  leveling
on  the  substrate.  The  AgNW  electrode  can  be  easily  pat-
terned  by  using  a  pre-patterned  gravure  roller.  In  addition,
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Fig. 2. (Color online) (a) Photographs of the large-area flexible OSCs. (b) J–V characteristics and (c) EQE spectra of the large-area flexible solar cells
with PET/Ag/Cu grid electrodes. (d) J–V characteristics and (e) EQE spectra of the large-area flexible solar cells with PET/ITO electrodes (repro-
duced with copyright permission from Wiley-VCH)[16].

2 Journal of Semiconductors    doi: 10.1088/1674-4926/42/5/050301

 

 
W Pan et al.: Over 1 cm  2 flexible organic solar cells

 



Table 1.   The performance data for large-area flexible OSCs (> 1 cm2) (Fig. 5).

Year Area (cm2) PCE (%) Electrode Device structure Fabrication technique Ref.

2005 1.2 1 PEDOT:PSS PEDOT:PSS/α-NPD/C60/BCP/Mg:Al Spin coating [36]
2007 10 1.6 ITO PET/ITO/PEDOT:PSS/P3HT:PCBM/Al Doctor blading [37]
2009 1 2.7 ITO PET/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Silver Screen printing [38]
2010 4 1.93 Ag grid PEN/Ag grid/HC-PEDOT/P3HT:PCBM/LiF/Al Spin coating [39]
2013 1.21 1.36 Ag grid PET/Ag grid/PH1000/PEDOT:PSS-4083/P3HT:PCBB-C8/LiF/Al Spin coating [11]
2014 1.21 5.85 Ag grid PET/Ag grid/PH1000/ZnO/PFN/PTB7:PC71BM/MoO3/Ag Spin coating [10]
2015 4 7.09 Ag PET/Ag/PFN/PTB7-Th:PC71BM/MoO3/Ag/MoO3 Spin coating [34]
2017 1.25 8.28 Ag grid PET/Ag grid/PTB7-Th:p-DTS(FBTTH2)2:PC71BM/MoO3/Ag Slot-die [40]
2018 2.03 7.6 Ag/TiOx Ag/TiOx/ZnO/PTB7-Th:ITIC/PEDOT:PSS Doctor blading [41]
2019 1 12.26 Ag/Cu grid PET/Ag/Cu grid/E100/ZnO/PBDB-TF:IT-4F/MoO3/Al Spin coating [16]
2020 1 13.6 Ag NWs PET/Ag NWs/ZnO/PM6:Y6/MoO3/Al Spin coating [3]

Table 2.   The performance data for flexible OSC modules (Fig. 5).

Year Area (cm2) PCE (%) Electrode Device structure Fabrication
technique Ref.

2005 16.8 0.04 PEDOT:PSS PET/PEDOT:PSS/MDMO-PPV:PCBM/Al Doctor blading [42]
2007 17.1 1.5 ITO PET/ITO/PEDOT:PSS/P3HT:PCBM/Al Doctor blading [37]
2008 53 2.52 ITO PET/ITO/ PEDOT:PSS/P3HT:PCBM/ LiF/Al Spin coating [43]
2009 120 2.1 ITO PET/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Silver Screen printing [38]
2013 66 1.6 Ag grid PET/Ag grid/PEDOT:PSS/ZnO/P3HT:PCBM/PEDOT:PSS/Ag grid Slot-die [44]
2014 8 3 Ag grid PET/Ag grid/PEDOT/ZnO/PDTSTTz-4:PCBM/PEDOT/Ag Slot-die [45]
2016 35 4.2 FTO PET/FTO/PBTZT-stat-BDTT-8:PCBM/PEDOT:PSS/Ag Slot-die [46]
2017 10.5 6.5 Ag PES/Ag/PEI/P3HT:ICBA/PEI:m-PEDOT:PSS/PTB7-

Th:PCBM/PEDOT:PSS/Ag grid
Spin coating [47]

2019 15 8.9 ITO PET/ITO/ZnO/active layer (PTB7-Th: PC71BM or PBDB-T:
ITIC)/MoO3/Ag

Slot-die [27]

2020 25 10.09 Ag grid PET/Ag grid/ZnO/PTB7-Th:COi8DFIC:PC71BM/MoO3/Ag Slot-die [4]
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Fig. 3. (Color online) (a) Sketch of spin coating and slot-die coating. (b) The small-area rigid device and large-area flexible device. (c) The chemic-
al structures of PTB7-Th, PC71BM, and COi8DFIC. (d) Optical microscopy and SEM images of the PET/silver-grid substrate. (e) Comparison of this
work with reported PCEs for flexible devices made by slot-die coating (reproduced with copyright permission from Wiley-VCH)[4].
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gravure  printing  is  extremely  suitable  for  large-scale  fabrica-
tion  because  of  its  high  printing  speed.  To  meet  the  require-
ment  of  gravure  printing,  the  ink  needs  to  be  optimized  to
have  suitable  surface  tension,  volatilization  rate,  and  viscos-
ity. After careful ink formulation and printing process optimiza-
tion,  the  gravure-printed  AgNW  electrode  showed  a  high
light  transmittance  of  95.4%  (excluding  PET  substrate)  and
low sheet resistance of ~ 10 Ω/□ with excellent homogeneity.
An  efficiency  of  13.61%  (certified  12.88%)  was  achieved  for
1  cm2 cells  with  printed  AgNW  electrode  (Fig.  4(b)).  Interest-
ingly,  the cells  with  gravure-printed AgNW electrode (AgNW-
GV)  presented much narrower  PCE distribution than the cells
with  spin-coated  AgNW  electrode  (AgNW-SP),  which  might
be due to the homogenously distributed cavities.

Since  the  first  report  on  flexible  OSCs  in  2004,  the  effi-
ciency  for  small-area  flexible  OSCs  (<  1  cm2)  has  increased
from ~1% to 16.5%. The efficiency of middle-sized cells (≥ 1 cm2)
is lower than that of the small cells (Fig. 5), due to the unavoid-
able  increase  of  series  resistance  of  the  electrode.  Interest-
ingly,  PCEs  of  both  small  and  middle-sized  flexible  OSCs  in-
crease  fast  after  2016,  which  is  due  to  the  development  of
high-performance non-fullerene acceptors  IT-4F[25] and Y6[26],
and  also  the  development  of  high-performance  flexible  met-
al-nanogrid  and  nanowire  electrodes.  From Tables  1 and 2,
the large-area flexible single OSCs and the flexible OSC mod-
ules usually used Ag nanowire and Ag grid as the flexible elec-
trodes, demonstrating the great potential of these flexible elec-
trodes  in  upscaling  flexible  OSCs.  Higher  PCE  is  expected  to

be  achieved  in  next  few  years  with  the  fast  development  of
transparent  electrodes  and  new  methods  for  preparing  flex-
ible solar modules[24, 27].

Many  advances  have  been  made  in  flexible  OSCs  in  the
last few years, and > 10% PCE was realized for the flexible sol-
ar  modules,  moving one big step toward the real  application
of  flexible  OSCs.  However,  there exist  two critical  issues:  scal-
ing-up and encapsulation. As the layer thickness and nanomor-
phology of  the photoactive layer  might be different  at  differ-
ent  sites  (e.g.  the  edge vs the  center),  a  good  way  to  control
the drying process of the printed organic thin films is very im-
portant.  Sequential  deposition  technology[48],  temperature
control on solution and substrate[49], etc were applied in slot-
die  coating  and  blade  coating.  For  the  upscaling,  the  homo-
geneity  controlling  is  another  challenge.  The  homogeneity  is
not only affected by the drying process, but also by the inter-
face  contact[50].  Thus,  the  electrode,  the  quality  of  the  inter-
face layer and the active layer should be well controlled. Grav-
ure printing could be a promising method for making homo-
geneous  large-area  OSCs.  Very  recently,  Kim et  al.[51] repor-
ted  the  preparation  of  flexible  perovskite  solar  cells,  indicat-
ing the potential of gravure printing. As for thin film encapsula-
tion, experiences from OLED industry could be helpful, where
iterative organic/inorganic  thin films showed excellent  block-
ing function to  water  vapor  and oxygen.  Thin  polymer  layers
ensure a  good flexibility  for  the encapsulation film,  while  the
condense  inorganic  layer  act  as  barrier  against  water  vapor
and  oxygen.  Applying  all  these  strategies  well,  we  expect
that flexible OSC modules will be in the market soon.
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